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Abstract. The weak-localization contributionδσ (B) to the conductivity of a tunnel-coupled
double-layer electron system is evaluated and its behaviour in weak magnetic fieldsB perpendicular
or parallel to the layers is examined. In a perpendicular fieldB, δσ (B) increases and remains
dependent on the tunnelling as long as the magnetic field is smaller than ¯h/eDτt , whereD is the
in-plane diffusion coefficient andτt the interlayer tunnelling time. Ifτt is smaller than the inelastic
scattering time, a parallel magnetic field also leads to a considerable increase of the conductivity
starting with aB2-law and saturating at fields higher than ¯h/eZ

√
Dτt , whereZ is the interlayer

distance. In the limit of coherent tunnelling, whenτt is comparable to the elastic scattering time,
δσ (B) differs from that of a single-layer system due to ensuing modifications of the diffusion
coefficient. A possibility for probing the weak-localization effect in double-layer systems by
means of the dependence of the conductivity on the gate-controlled level splitting is discussed.

1. Introduction

The interference of electronic waves leads to negative corrections to the conductivity of electron
systems. This effect is known as weak localization. It can be observed at very low temperatures,
when the inelastic scattering rate is so small that the phase coherence is kept over many acts
of elastic scattering. Although these quantum corrections are usually small, they can be
distinguished due to their specific dependence on temperature, magnetic field, and frequency
of the applied electric field.

The fundamentals of the theory of weak localization have been developed in references
[1–4] and a review is given in reference [5]. Recently considerable attention [6–16] has
been drawn to weak-localization phenomena in layered systems, where characteristic features
are caused by a dimensionality crossover, as well as in single-layer systems [17]. These
studies have been applied mostly to multilayer systems (superlattices) although the cases
of barrier-separated thin metallic films [9, 10] and single-barrier structures [12] have also
been investigated. In this paper we calculate the weak-localization corrections to the in-plane
conductivity of two tunnel-coupled two-dimensional (2D) layers, the system which is typically
formed in double-quantum-well structures [18]. Such double-layer electron systems represent
an intermediate case between a single 2D layer and a three-dimensional superlattice and their
various interesting properties are caused mainly by this fact. As regards the weak-localization
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problem, the tunnel coupling introduces an additional cut-off parameter in the diffusion pole,
which implies that the weak-localization contribution to the conductivity depends on the
strength of this coupling. This happens when the probability of tunnelling is not small
in comparison to that of inelastic scattering. Another important consequence of the tunnel
coupling is that a weak magnetic fieldB appliedparallel to the layers leads to a delocalization
as does a fieldB appliedperpendicularto the layers [4]. The physical origin of the effect of
the parallel field is explained in a similar way: this field introduces an additional phase for the
electron which moves in one layer, then tunnels into another layer, moves there, and finally
tunnels back and returns to the initial point. The phenomena described are the subject of the
present study.

The paper is organized as follows. In section 2 we present the basic formalism for the
calculation of the weak-localization contribution to the conductivity of a double-layer system.
In section 3 we calculate the magnetoconductivity in aperpendicularmagnetic fieldB and in
section 4 we repeat the calculation for aparallel field B. In section 5 we study the magneto-
conductivity in conditions of coherent tunnel coupling, when the tunnelling probability is
comparable to or greater than the probability of elastic scattering. In section 6 we discuss the
results and consider the possibility of probing the weak-localization effects in double quantum
wells by examining the dependence of the conductivity on the gate-controlled energy splitting
of the lowest two levels of the double quantum well.

2. Formalism

The Hamiltonian of the double-quantum-well system is given, in the basis of the left (l) and
right (r) layer orbitals|l〉 and|r〉, by

Ĥ (x) = P̂l [El(x) + Vl(x)] + P̂r [Er(x) + Vr(x)] + ĥ (1)

wherex = (x, y) is the in-plane position vector;Ej(x) = 〈j |(−ih̄ ∂/∂x + eA(x, z))2|j〉/2m
(j = l, r) is the matrix element of the kinetic energy operator,A(x, z) the vector potential,e
the elementary charge,m the effective mass, andVj (x) = 〈j |V (x, z)|j〉 the matrix element
of the disorder potential. Furthermore,

ĥ = 1

2
σ̂z + T σ̂x (2)

is the potential energy matrix of the double-quantum-well system expressed through the energy
level splitting1 and tunnelling matrix elementT . Finally, σ̂i are the Pauli matrices and
P̂l = (1 + σ̂z)/2 andP̂r = (1− σ̂z)/2 the projection matrices.

According to the Kubo formula, the zero-temperature dc conductivity is given by

σαα′ = e2h̄

2πm2L2

∑
bb′=R,A

(−1)l Tr
∫ ∫

dx dx′
〈
π̂α(x)Ĝb

EF
(x,x′)π̂α

′
(x′)Ĝb′

EF
(x′,x)

〉
(3)

whereĜR,A
EF
(x,x′) are the Green’s functions of the electron system with Fermi energyEF ,L2

is the normalization area,π̂α(x) is the kinematic momentum operator, whose matrix elements
are given as [̂π(x)]jj = 〈j | − ih̄ ∂/∂x + eA(x, z)|j〉, andα andα′ are the coordinate indices
(x, y). The angular brackets〈· · ·〉 denote statistical averaging, ‘Tr’ denotes the trace,l = 1 for
b = b′ andl = 0 for b 6= b′.

The weak-localization contributionδσαα′ to the in-plane conductivity is given by the sum
of an infinite set of diagrams with two or more maximally crossed impurity lines. Below,
we consider a system of randomly distributed elastic scatterers (impurities) described by the
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correlation function
〈
Vj (x)Vj ′(x

′)
〉 = Wjj ′(x,x

′) = wjδjj ′δ(x− x′). We obtain

δσαα′ = e2h̄

2πm2L2

∑
bb′=R,A

(−1)l
∑
jj ′j1j2

∫ ∫
dx dx′ παjj (x)G

b
jj1
(x,x1)G

b
j2j ′(x2,x

′)

× πα′j ′j ′(x′)Gb′
j ′j1
(x′,x1)G

b′
j2j
(x2,x)C̃

bb′
j1j2
(x1,x2) (4)

whereGb
jj ′(x,x

′) = 〈[Ĝb
EF
(x,x′)]jj ′ 〉 are the averaged one-particle Green’s functions, and

C̃bb
′

j1j2
(x1,x2) is the Cooperon, the solution of the Bethe–Salpeter equation, given by

C̃bb
′

j1j2
(x1,x2) = wj1G

b
j1j2
(x1,x2)G

b′
j1j2
(x1,x2)wj2

+ wj1

∑
j

∫
dx Gb

j1j
(x1,x)G

b′
j1j
(x1,x)C̃

bb′
jj2
(x,x2). (5)

In the following we use equations (4) and (5) to calculateδσαα′ for both directions of the
magnetic field, perpendicular and parallel to the layers.

3. Perpendicular magnetic field

Consider the case when the fieldB is directed perpendicular to the layers,B = (0, 0, B). In
the Landau gauge,A = (0, Bx,0), we can write the Green’s function as

Gb
j1j2
(x1,x2) = 1

2π`2
e−i(x1+x2)(y1−y2)/2`2

e−(x1−x2)
2/4`2

∑
n

L0
n((x1− x2)

2/2`2)Gb
j1j2
(n)

(6)

whereGb
j1j2
(n) is the averaged Green’s function in the Landau-level representation,L0

n are the
Laguerre polynomials, and̀= √h̄/eB is the magnetic length. From equations (5) and (6) it
follows that the Cooperon may be written as

C̃bb
′

j1j2
(x1,x2) = e−i(x1+x2)(y1−y2)/`

2
Cbb

′
j1j2
(|x1− x2|) (7)

whereCbb
′

j1j2
is its translationally invariant part, which is also called a Cooperon in the following.

IntroducingCbb
′

jj ′ (p) as the Fourier transform ofCbb
′

jj ′ (x), we obtain

Cbb
′

j1j2
(p) = wj13

bb′
j1j2
(p)wj2 +wj1

∑
p′,j

∫
dx e(i/h̄)(p

′−p)·x

× 3bb′
j1j
([(p′x − h̄y/`2)2 + (p′y + h̄x/`2)2]1/2)Cbb

′
jj2
(p′) (8)

where3bb′
j1j2
(p) is the Fourier transform of the translationally invariant part of the product

Gb
j1j2
(x1,x2)G

b′
j1j2
(x1,x2). In the Landau-level representation it can be expressed as

3bb′
jj ′ (p) =

1

2π`2

∑
nn′
(−1)n+n′ exp(−u)Ln−n′n (u)Ln

′−n
n′ (u)Gb

jj ′(n)G
b′
jj ′(n

′) (9)

whereu = p2`2/2h̄2. Below, we consider very weak fieldsB, `2 � (vFj τj )
2, wherevFj

andτj are, respectively, the Fermi velocities and elastic scattering times in the layers. In this
diffusion limitwe can expand3bb′

j1j
(· · ·) of equation (8) in series in ¯hx/`2 andh̄y/`2. From

equation (8) we obtain a set of differential equations

Cbb
′

j1j2
(p) = wj13

bb′
j1j2
(p)wj2 +wj1

∑
j

[
3bb′
j1j
(p)Cbb

′
jj2
(p)− h̄4

2`4

d23bb′
j1j
(p)

dp2

∂2

∂p2
Cbb

′
jj2
(p)

]
.

(10)
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In the diffusion limit we can also neglect theB-dependence of3bb′
j1j2
(p), using the expression

3bb′
j1j2
(p) =

∑
q

Gb
j1j2
(p/2− q)Gb′

j1j2
(p/2 +q) (11)

whereGb
j1j2
(p) are the matrix elements of the Green’s function:

ĜR,A(p) =
[
EF − p2

2m
− ĥ± P̂l ih̄

2

(
1

τl
+

1

τϕl

)
± P̂r ih̄

2

(
1

τr
+

1

τϕr

)]−1

(12)

describing the double-layer system in the absence of the magnetic field. The Fermi energy
is measured from the centre between the two levels of the double quantum well, the elastic
scattering times are introduced asτj = h̄3/mwj , and theτϕj are the phenomenologically
introduced inelastic scattering times.

In the weak-coupling limit we have

1

τt
= 2(T /h̄)2τ

1 + (1τ/h̄)2
� 1

τ
(13)

whereτ = 2τlτr/(τl + τr) is the average elastic scattering time andτt the tunnelling time. A
calculation of3bb′

j1j2
(p) in the limit (13) gives

3RA
jj (p) '

1

wj

(
1− τj

τϕj
−Djτj

(
p

h̄

)2

− τj
τt

)
(14)

and

3RA
lr (p) = 3RA

rl (p) '
τl + τr

(wl +wr)τt
. (15)

In equation (14) we introduced the 2D diffusion coefficients in the layersDj = v2
Fj τj /2.

3AR
jj ′ (p) is given by equations (14) and (15) as well, while3RR

jj ′ (p) and3AA
jj ′ (p) are small and

can be neglected. A substitution of equations (14) and (15) into equation (10) leads to the
following equations:

− h̄
2Dlτl

`4

∂2

∂p2
CRAll (p) +

(
τl

τϕl
+Dlτl

(
p

h̄

)2

+
τl

τt

)
CRAll (p)−

τr

τt
CRArl (p) = wl (16)

− h̄
2Drτr

`4

∂2

∂p2
CRArl (p) +

(
τr

τϕr
+Drτr

(
p

h̄

)2

+
τr

τt

)
CRArl (p)−

τl

τt
CRAll (p) = 0. (17)

CRArr (p) andCRAlr (p) are given by equations (16) and (17) with the indicesl andr interchanged.
Equations (16) and (17) can be diagonalized by the substitutions

CRAll (p) = Cl1(p) +Cl2(p) and CRArl (p) = λ1C
l
1(p) + λ2C

l
2(p).

ForCk(p) (k = 1, 2) we obtain[
− h̄

2

`4

∂2

∂p2
+

(
p

h̄

)2

+ q2
k

]
Clk(p) =

wl

τlDl

Ak (18)

where

q2
1,2 = (sl + sr )/2± S/2 A1,2 = 1/2± (sl − sr )/2S. (19)

Heresj = (Djτϕj )
−1 + (Djτt )

−1, s2
t = (DlDrτ

2
t )
−1, andS = [(sl − sr )2 + 4s2

t ]
1/2. Equation

(18) is analogous to that for the Green’s function of a two-dimensional harmonic oscillator and
its solution is obtained in a straightforward way. The result is

CRAll (p) = 2
wl

τlDl

∑
n

(−1)ne−uL0
n(2u)

[
A1

(2/`2)(2n + 1) + q2
1

+
A2

(2/`2)(2n + 1) + q2
2

]
. (20)
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The expression forCRArr (p) is given by equation (20) with the layer indices interchanged.
Both terms in equation (20) contain diffusion poles modified due to tunnelling. In the

absence of tunnelling (uncoupled layers) we obtain the well-known result [4] for each layer.
Now we calculate the weak-localization contributionδσαα′ . In the diffusion limit, equation (4)
gives

δσαα′ = e2h̄

2πm2L2

∑
bb′=R,A

(−1)l
∑
jj ′j1j2

∑
pp′
pαp

′
α′G

b
jj1
(p)Gb

j2j ′(p
′)

× Gb′
j ′j1
(p′)Gb′

j2j
(p)Cbb

′
j1j2
(|p + p′|). (21)

In the limit (13) we should retain only the terms withj = j ′ = j1 = j2. The weak-localization
contribution is expressed throughCRAll (p)andCRArr (p). It gives a positive magnetoconductivity
1σ = δσ (B)− δσ (0) as a sum of two parts [9]:

1σ

δσ0
= f

(
4

`2q2
1

)
+ f

(
4

`2q2
2

)
. (22)

Hereδσ0 = e2/2π2h̄, andf (x) = ψ(1/2 + 1/x) + ln x, whereψ(x) is the digamma function.
In the absence of the magnetic field, the weak-localization contribution, within logarithmic
accuracy, is given as

δσ (0) = δσ0 ln

(
τlτr

τϕlτϕr
+ 2

τlτr

τt τϕ

)
(23)

where we have introduced an average inelastic scattering timeτϕ = 2τϕlτϕr/(τϕl + τϕr).
It is convenient to analyse the results (22) and (23) in the symmetric case described by
Dl = Dr = D, τl = τr , and τϕl = τϕr . In this case equation (23) takes the form
δσ (0) = δσ0[ln(τ/τϕ) + ln(τ/τϕ + 2τ/τt )]. The first term is the same as in the absence of
tunnelling while the second one is tunnelling dependent. In the symmetric case, equation (22)
gives

1σ

δσ0
= f

(
B

B0

)
+ f

(
B

B0(1 + 2τϕ/τt )

)
(24)

whereB0 = h̄/4eDτϕ is the characteristic field. In weak magnetic fields, the magneto-
conductivity increases according to aB2-law. In stronger fields, when the magnetic length`
becomes less than

√
Dτt , δσ (B) loses its dependence on the tunnelling and the system behaves

like two decoupled layers. In the limitB � B0, B � B0(τϕ/τt ) the magnetoconductivity is
proportional to 2δσ0 lnB. Forτt � τϕ , an intermediate regime exists,B0� B � B0(τϕ/τt ),
in which the magnetoconductivity is proportional toδσ0 ln(B). Figure 1 shows the magnetic
field dependence of the magnetoconductivity described by equation (24) for several values of
τϕ/τt .

4. Parallel magnetic field

Due to the spatial separation of the layers, a fieldB applied parallel to them can considerably
influence the conductivity of the double-layer system; see, for example, references [19–22].
This effect occurs as a result of the modification of the electron energy spectrum of the coupled
layers by the fieldB. However, under the conditionτt � τ the coherent tunnel coupling is
suppressed by the elastic scattering and the effect disappears. In contrast, the influence of
this in-plane fieldB on the weak-localization part of the conductivity should exist as long as
τt < τϕ ; the corresponding characteristic fieldB1 has to be much smaller. An assessment of
this influence is given below in the limit (13).
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Figure 1. Magnetoconductivity of the double-layer system in aperpendicularmagnetic fieldB for
symmetric conditions. The curves are marked with the values of the ratioτt /τϕ andB0 = h̄/4eDτϕ .

The parallel field renders the electron Green’s function anisotropic. ForB = (0, B,0)
we chooseA = (B(z− z0), 0, 0) with z0 = (〈l| z |l〉 + 〈r| z |r〉)/2 and obtain [20, 21]

ĜR,A(p) =
[
EF − p2

2m
− 1px

2
σ̂z − T σ̂x ± P̂l ih̄

2

(
1

τl
+

1

τϕl

)
± P̂r ih̄

2

(
1

τr
+

1

τϕr

)]−1

(25)

where1px = 1−ωcZpx+δB ,ωc = eB/m is the cyclotron frequency,Z = 〈r| z |r〉−〈l| z |l〉 is
the interlayer distance, andδB ∼ B2 is a small field-dependent correction to the level splitting
which can be neglected for smallB.

Using equation (25) we can calculate3bb′
jj ′ (p) from equation (11). In contrast to the case

for the previous section,3bb′
jj ′ (p) is now anisotropic. In the limit̀ 2 � ZvFj τj , instead of

equation (14) we have

3RA
jj (p) '

1

wj

(
1− τj

τϕj
−Djτj [(px ∓ pB)2 + p2

y ]/h̄
2 − τj

τt

)
(26)

wherepB = mωcZ = eBZ, and the upper (lower) sign stands forj = l (j = r). Equation
(15) remains unchanged. The Bethe–Salpeter equation for the Cooperon now reduces to a set
of linear algebraic equations:

Cbb
′

j1j2
(p) = wj13

bb′
j1j2
(p)wj2 +wj1

∑
j

3bb′
j1j
(p)Cbb

′
jj2
(p) (27)

whose solution is straightforward. A calculation ofδσαα′ can be done according to equ-
ation (21), withCbb

′
j1j2
(|p + p′|) replaced byCbb

′
j1j2
(p + p′) found from equation (27). Since

τt � τ holds, we again putj = j ′ = j1 = j2 and finally obtain

1σ = 1σsat − δσ0

∑
j=l,r

∫ ∞
0

dx
s2
t

(x + sj )
√
Rj(x)

(28)

1σsat = δσ0 ln

[(
1 +

τϕl

τt

)(
1 +

τϕr

τt

)/(
1 +

τϕl + τϕr
τt

)]
(29)

wherex = (p/h̄)2 andRj(x) are the fourth-order polynomials defined by

Rl(x) = x4 + 2(sl + sr − xB)x3 + [(sl + sr )
2 + 2(slsr − s2

t ) + 2xB(sr − 2sl) + x2
B ]x2

+ 2[(sl + sr )(slsr − s2
t ) + xB(2slsr − s2

l − s2
t ) + x2

Bsl ]x + [slsr − s2
t + xBsl ]

2

(30)



The conductivity of double quantum wells 595

with xB = (2pB/h̄)2. The result forRr(x) is given by equation (30) with the layer indices
interchanged. Although the fieldB induces an anisotropy in the Green’s functions, the
localization correctionδσ (B) is isotropic because the main contribution in equation (21) comes
from |p| ' |p′| ' mvFj .

Equations (28)–(30) show that in the weak-field regionB � B1, whereB1 = h̄/eZ
√
Dτϕ

andD = 2DlDr/(Dl + Dr) is the average diffusion coefficient, the magnetoconductivity
follows aB2-law:

1σ

δσ0
=
(

2st eZB

h̄S

)2 [
sl + sr
slsr − s2

t

− 2

S
ln

(
sl + sr + S

sl + sr − S
)]
. (31)

At τt � τϕj we obtain1σ/δσ0 = (B/B1)
2. In the opposite limit, a simple expression for the

magnetoconductivity can be obtained in the symmetric case:1σ/δσ0 = 4
3(τϕ/τt )

2(B/B1)
2; it

shows a substantial suppression of the magnetoconductivity as a result of decreasing tunnelling
probability.

With the increase ofB, the B-dependence becomes weaker. ForB � B1 and
B2 � B2

1τϕ/τt , the integral in equation (28) can be neglected and the magnetoconductivity
is saturated and equal to1σsat defined by equation (29). Forτϕ/τt � 1 the saturated value
goes to zero. Recently, a saturation behaviour of the weak-localization contribution in parallel
magnetic fields has been theoretically found for superlattices [15].

When the conditionτt � τϕ holds, one can analytically evaluate the magnetoconductivity
for B2� B2

1τϕ/τt ; the result is

1σ = δσ0 ln[1 + (B/B1)
2]. (32)

It shows that in the intermediate regionB2
1 � B2� B2

1τϕ/τt , the magnetoconductivity follows
a logarithmic law. In figure 2 we demonstrate a transition from aB2-behaviour at weak fields
to the saturation at stronger fields for several values of the ratioτt/τϕ .

Figure 2. Magnetoconductivity of the double-layer system in aparallel magnetic fieldB for
symmetric conditions. The curves are marked as in figure 1 andB1 = h̄/eZ

√
Dτϕ

The tunnelling rate 1/τt can be varied by applying a transverse voltage which changes the
level splitting1 [18]. In the case under considerationEF � h̄/τ , a relatively small variation
of1 has no great influence on the electron densities in the wells, but can dramatically modify
the tunnelling rate. Figure 3 shows the1-dependence ofδσ (B) − δσ (0)|1=0 for several
values of the magnetic field, for bothparallel (solid) andperpendicular(dashed lines) fields;
the thick solid line is the result forB = 0. The curves have a typical resonance-like behaviour
that is affected differently by the two field orientations. An increase of1 always leads to a
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Figure 3. The relative weak-localization correction to the conductivity of the double-layer system
as a function of the level splitting1 for several values of theparallel (solid) andperpendicular
(dashed) magnetic field. It is assumed thatτt /τϕ = 0.1 at1 = 0. The numbers next to the curves
show the values ofB/B0 (perpendicular field) and(B/B1)

2 (parallel field).

decrease of the conductivity, because in this way the tunnelling is suppressed and, therefore,
the interference is increased. The perpendicular magnetic field tends to smooth this effect
because it suppresses the dependence of the weak-localization part of the conductivity on
the tunnelling; see section 3. On the other hand, the parallel field tends to strengthen the
tunnelling dependence of the weak-localization part: in the saturation regime, cf. figure 2, this
dependence is the strongest.

Above, we calculated the magnetoconductivity in the weak-tunnelling regime. Below, we
evaluate it again in the regime of coherent tunnel coupling.

5. Coherent tunnelling regime

The aim of this section is to study the weak-localization effects at sufficiently strong, coherent
tunnel coupling, described byτt ∼ τ or evenτt � τ . In these conditions one always has
τt � τϕ , which means that there is no competition between the tunnelling and inelastic
scattering processes. As a result, instead of two diffusion poles—see equation (20)—the
expression for the Cooperon contains just one pole as for a single-layer system. However, the
properties of this pole are somewhat different to those in the case of a single 2D layer and
require a separate consideration.

Below, we assume thatEF is large in comparison withT and1. Introducing a single
Fermi velocityvF for both layers, we write the average diffusion coefficient asD = v2

F τ/2.
The calculation of the Cooperon according to equations (11), (25), and (27) gives

Cjj ′(p) = wjwj ′

wl +wr

[
τ

τϕ
+
D(1)τ

h̄2 (p2 + r(1)p2
B + 2µr(1)pBpx)

]−1

. (33)

The inelastic scattering time enters the diffusion pole only as an average. On the other hand,
the Cooperon depends on the asymmetry of the elastic scattering described by the parameter
µ = (τr − τl)/(τr + τl). In equation (33) we have also introduced a1-dependent diffusion
coefficient according to

D(1) = D

1− µ2r(1)
r(1) = 12 + (h̄/τ )2

12 + 4T 2 + (h̄/τ )2
. (34)
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Note thatD(1) differs fromD only if the elastic scattering is asymmetric.
If there is no parallel magnetic field (pB = 0), equation (33) has the same form as the

Cooperon of a single-layer system. Therefore, in the diffusion regime, equation (33) with the
substitutionp2 → 4h̄eB(n + 1/2) can be directly used to calculate the magnetoconductivity
in a perpendicular magnetic fieldB. Using equation (21), we obtain, in analogy with the
single-layer case,

1σ = δσ0 f

(
4eD(1)Bτϕ

h̄

)
(35)

and, with logarithmic accuracy,δσ (0) = δσ0 ln(τ/τϕ). The only difference between
equation (35) and the well-known expression for a single-layer 2D system is the replacement
ofD in the latter byD(1). The physical meaning of this change is clear and easily understood
in terms of the resistance resonance phenomenon [23, 24]; see also reference [18]. In
the corresponding theory [23, 24], the factor 1/[1 − µ2r(1)] describes the1-dependence
of the conductivity and of the diffusion coefficientD of the double quantum wells with
asymmetric scattering. With the increase of|1|, D increases and leads to an increase of
the magnetoconductivity1σ .

Now we consider the case of a parallel magnetic field. Using equations (33) and (21), we
obtain

1σ = δσ0 ln
[
1 + r(1)(B/B1)

2
]
. (36)

The magnetoconductivity described by equation (36) does not depend on the asymmetry of
the scattering. On the other hand, its dependence on1 has the same sign as in the case of the
perpendicular field: when1 increases,r(1) goes to unity and1σ increases. The behaviour
of the magnetoconductivity described by equations (35) and (36) is illustrated in figure 4.

Figure 4. Magnetoconductivity of the double-layer system in a coherent tunnelling regime for
2T τ/h̄ = 4 andµ = 0.7. The solid and dashed lines correspond to parallel and perpendicular
fields, respectively. The curves are marked with the values of the ratio1/2T .

The results for the magnetoconductivity described in this section are valid forτt � τϕ
under the conditionsDτteB/h̄ � 1 for perpendicular fieldB andDτt(eZB/h̄)2 � 1 for
parallel fieldB. In the limit (13), whenr(1) = 1, equation (35) is equivalent to equation (22)
written atτt � τϕ andDτteB/h̄� 1, while equation (36) is equivalent to equation (32).
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6. Discussion

We have investigated the influence of the tunnel coupling between two 2D layers on the
weak-localization-induced magnetoconductivity. This coupling introduces an extra degree of
freedom for an electron giving it the possibility of tunnelling between the layers and, therefore,
it reduces the interference effects. As a result, the weak-localization contribution is reduced
as the tunnelling rate 1/τt gradually prevails over the inelastic scattering rate. In particular,
it leads to the weakening of the magnetoresistance in the perpendicular magnetic field; see
section 3.

The results described in section 3 are similar to those obtained in reference [9] for two
thin metallic films separated by a barrier if one makesτt equal to the tunnelling timesτ12 and
τ21 of reference [9]. This is not surprising. When the inelastic scattering lengths are small
in comparison to the film widths, the diffusion of the electrons in such a system proceeds in
the same way as in coupled 2D layers. A characteristic feature of the double-quantum-well
case, as opposed to the case of thin films, is the strong resonance dependence of the tunnelling
time τt , cf. equation (13), on the energy-level splitting1. The latter can be easily controlled
by external gates enclosing the double quantum wells. This opens up a new way to examine
the weak-localization phenomena by measuring the1-dependence of the conductivity—see,
for example, figure 3—in addition to theB-dependence. The conductivity, due to its weak-
localization part, is maximal when the tunnelling resonance condition1 = 0 holds (this
can be called ‘delocalization resonance’), while an increase of1 increases the interference
and leads to a decrease of the conductivity down to its value for uncoupled layers. On the
other hand, if the scattering times in the layers are different, the main part of the conductivity
will show the opposite effect (the resistance resonance [18]). Although the relative size of the
resistance resonance would be small due to the parameterτ/τt , it can obscure the delocalization
resonance. Therefore, the samples with symmetric scattering are preferable for probing the
interference corrections.

In section 4 we studied the magnetoconductivity in a parallel magnetic field. Since this
magnetoconductivity can exist only in the presence of the tunnel coupling, it becomes more
pronounced as the tunnelling rate prevails over the inelastic scattering rate. Although at very
smallB both parallel and perpendicular fields giveB2-corrections to the magnetoconductivity,
at higher fields the behaviour becomes completely different. When theperpendicularfield is
larger than bothB0 andB0τϕ/τt , the weak-localization contribution increases logarithmically
with B and does not depend on the tunnelling. When theparallel field is larger than bothB1

andB1
√
τϕ/τt , δσ (B) becomes saturated, i.e., it loses its dependence onB but not that on the

tunnelling. Since(vF /Z)
√
τϕτ � 1 holds, the characteristic parallel fieldB1 is much larger

than the characteristic perpendicular fieldB0.
With an increase of1, bothδσ (B) and1σ in a parallel magnetic field decrease. However,

in the case of coherent tunnel coupling (section 5) the behaviour of the magnetoconductivity
1σ versus1 is opposite: an increase of1 increases1σ . A transition between these two kinds
of behaviour can be explained as follows. When the tunnel coupling becomes so strong that
Dτt(eBZ/h̄)

2 � 1, a change ofτt with 1 no longer modifies the magnetic field suppression
of the interference; see section 4. With a further increase of the tunnelling rate, when the latter
prevails over the elastic scattering rate, coherent coupling effects become important. Instead
of the states localized in the wells, one has a pair of hybridized states, which are well defined
in the limit of 2T � h̄/τ . At 1 = 0 the electron density in both of these states is distributed
equally among the wells, and the parallel magnetic field cannot reduce the interference in
the way described in the introduction. The magnetoconductivity is zero, which is given also
by equation (36) at 2T � h̄/τ and1 = 0. At 1 6= 0 the symmetry is broken. The two
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states are mostly localized in different wells and the parallel magnetic field can reduce the
interference because transitions of electrons between these states are possible. In conclusion,
the magnetoconductivity increases with an increase of1.

Let us briefly discuss the main approximations used in this paper. Since we neglected the
electron–electron interaction, which also leads to quantum corrections to the conductivity, the
theory is applicable at temperatures considerably lower than ¯h/τϕ [25]. We also neglected the
possibility of spin-flip scattering, assuming that the relevant scattering time is larger thanτϕ .
The assumption ofδ-correlated scattering does not lead to principal changes. For example, if
one takes into account the interlayer correlation of the scattering amplitudes, one has only to
replace 1/τ in equation (13) by 1/τ − 1/τlr , whereτlr = h̄3/mwlr .

Throughout the paper we calculated the total, i.e. summed over both layers, in-plane
conductivity of the double-layer system. Experimentally, it corresponds to double quantum
wells with common contacts to the layers. The case of independently contacted layers does
not require a separate consideration for the following reason. Since the system is assumed
macroscopic, its in-plane size should substantially exceed the inelastic scattering lengthvF τϕ .
On the other hand, the tunnel coupling manifests itself in weak-localization phenomena under
the conditionτϕ > τt . In such a case, a characteristic current redistribution length [26]

ls ∼
√
v2
F ττt

is small in comparison to the size of the system, which means that for any case of independent
contacting, the double-layer system would behave as a system with common contacts.

Finally, since we analysed in detail the results for parallel and perpendicular fieldsB, our
study could be of help in describing weak localization in tilted magnetic fields by decomposing
B into the relevant components. For a compact treatment that encompasses both orientations,
applicable tosinglequasi-2D or 3D systems and/or superlattices but not to double wells as
investigated here, we refer the reader to reference [27].
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