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Abstract. The weak-localization contributiofio (B) to the conductivity of a tunnel-coupled
double-layer electron system is evaluated and its behaviour in weak magnetidfidsendicular

or parallel to the layers is examined. In a perpendicular fRldo (B) increases and remains
dependent on the tunnelling as long as the magnetic field is smalleh ta@r,, whereD is the
in-plane diffusion coefficient ang the interlayer tunnelling time. If, is smaller than the inelastic
scattering time, a parallel magnetic field also leads to a considerable increase of the conductivity
starting with aB2-law and saturating at fields higher thapeZ./D1;, whereZ is the interlayer
distance. In the limit of coherent tunnelling, whenis comparable to the elastic scattering time,
S0 (B) differs from that of a single-layer system due to ensuing modifications of the diffusion
coefficient. A possibility for probing the weak-localization effect in double-layer systems by
means of the dependence of the conductivity on the gate-controlled level splitting is discussed.

1. Introduction

The interference of electronic waves leads to negative corrections to the conductivity of electron
systems. This effectis known as weak localization. It can be observed at very low temperatures,
when the inelastic scattering rate is so small that the phase coherence is kept over many acts
of elastic scattering. Although these quantum corrections are usually small, they can be
distinguished due to their specific dependence on temperature, magnetic field, and frequency
of the applied electric field.

The fundamentals of the theory of weak localization have been developed in references
[1-4] and a review is given in reference [5]. Recently considerable attention [6—16] has
been drawn to weak-localization phenomena in layered systems, where characteristic features
are caused by a dimensionality crossover, as well as in single-layer systems [17]. These
studies have been applied mostly to multilayer systems (superlattices) although the cases
of barrier-separated thin metallic films [9, 10] and single-barrier structures [12] have also
been investigated. In this paper we calculate the weak-localization corrections to the in-plane
conductivity of two tunnel-coupled two-dimensional (2D) layers, the system which is typically
formed in double-quantum-well structures [18]. Such double-layer electron systems represent
an intermediate case between a single 2D layer and a three-dimensional superlattice and their
various interesting properties are caused mainly by this fact. As regards the weak-localization
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problem, the tunnel coupling introduces an additional cut-off parameter in the diffusion pole,
which implies that the weak-localization contribution to the conductivity depends on the
strength of this coupling. This happens when the probability of tunnelling is not small
in comparison to that of inelastic scattering. Another important consequence of the tunnel
coupling is that a weak magnetic fieldappliedparallel to the layers leads to a delocalization

as does a field appliedperpendicularto the layers [4]. The physical origin of the effect of

the parallel field is explained in a similar way: this field introduces an additional phase for the
electron which moves in one layer, then tunnels into another layer, moves there, and finally
tunnels back and returns to the initial point. The phenomena described are the subject of the
present study.

The paper is organized as follows. In section 2 we present the basic formalism for the
calculation of the weak-localization contribution to the conductivity of a double-layer system.
In section 3 we calculate the magnetoconductivity pegoendicularmagnetic fieldB and in
section 4 we repeat the calculation foparallel field B. In section 5 we study the magneto-
conductivity in conditions of coherent tunnel coupling, when the tunnelling probability is
comparable to or greater than the probability of elastic scattering. In section 6 we discuss the
results and consider the possibility of probing the weak-localization effects in double quantum
wells by examining the dependence of the conductivity on the gate-controlled energy splitting
of the lowest two levels of the double quantum well.

2. Formalism

The Hamiltonian of the double-quantum-well system is given, in the basis of thé)lefiq
right (r) layer orbitals//) and|r), by

H(z) = P [E(x) + Vi(@)] + B, [E,(x) + V()] + h 1)

wherez = (x, y) is the in-plane position vectoE; (z) = (j|(—ih 3/0z + e A(z, 2))?|j)/2m
(j =1, r) is the matrix element of the kinetic energy operatbfz, z) the vector potentiak
the elementary charge; the effective mass, and; () = (j|V (z, z)|j) the matrix element
of the disorder potential. Furthermore,

h = é&z +Té6, 2)

2
is the potential energy matrix of the double-quantum-well system expressed through the energy
level splitting A and tunnelling matrix elemeri. Finally, o; are the Pauli matrices and
P = (1+6,)/2 andP, = (1 — 6,)/2 the projection matrices.
According to the Kubo formula, the zero-temperature dc conductivity is given by

s

Owed! = 7575
2mm2L2

3 T / / da da’ <ﬁ“(w)éb&_ (m,w’)ﬁ“’(x’)égF(w/,w)> ©)

bb'=R,A

Whereég’:‘ (x, ') are the Green's functions of the electron system with Fermi engggy.2
is the normalization are& (x) is the kinematic momentum operator, whose matrix elements
are given asf(x)];; = (j| —ih d/0x + eA(x, z)|j), ande anda’ are the coordinate indices
(x, y). The angular brackets- -) denote statistical averaging, ‘Tr’ denotes the trace,1 for
b=b andl =0forb #b'.
The weak-localization contributioiv,, to the in-plane conductivity is given by the sum
of an infinite set of diagrams with two or more maximally crossed impurity lines. Below,
we consider a system of randomly distributed elastic scatterers (impurities) described by the
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correlation functiodV; (z) V; (z')) = W, (z, ') = w;8;/8(x — «'). We obtain

e’h
d0uw = 535 A D' Y f / dz da’ 7§} ()G, (@, 21) G, (@2, @)
bb'= JJ'jijz
(wﬂﬁh@:mﬂG@@mwﬂhh@Lwﬁ 4)

whereG” (z, ) = [G (x, z')];;) are the averaged one-particle Green’s functions, and

C’,’lbl2 (1, :1:2) is the Cooperon the solution of the Bethe—Salpeter equation, given by

C (1. T2) = w;, G}, (x1, )G, (21, T)W),
+twj Z/dm G?lj(wl,a:)Gh](:cl,a:)Cm(w x2). (5)
j

In the following we use equations (4) and (5) to calculédg, for both directions of the
magnetic field, perpendicular and parallel to the layers.

3. Perpendicular magnetic field

Consider the case when the figbdis directed perpendicular to the layef$,= (0, 0, B). In
the Landau gauged = (0, Bx, 0), we can write the Green'’s function as

G?ljz(wl’ x5) = @i+ (1 — y2) /262 e (@— —x2)? /402 Z LO((wl _ wz) /2g )Gjljz(n)

ZJTEZ
(6)
WhereGlj?lj2 (n) is the averaged Green'’s function in the Landau-level representafjare the

Laguerre polynomials, antl= /i /eB is the magnetic length. From equations (5) and (6) it
follows that the Cooperon may be written as

Cll (@1, @) = &P DmDECH (|2y — ) 7)
WhereCj?f’jf2 is its translationally invariant part, which is also called a Cooperon in the following.
IntroducingC"% (p) as the Fourier transform &% (x), we obtain

bb' 5
lejz(p) =Wj Jljz(p)wjz twj Z / da e(l/ e

x AP (L(p) — hy/62>2 +(pl, + hx €YY (p) (8)
whereAbb ,(p) is the Fourier transform of the translationally invariant part of the product
]m (:cl, xz)Gm (x1, x2). In the Landau-level representation it can be expressed as

NP) = 5 DD exp—n L L )Gl 0 Gl ) (9)
whereu = p2¢?/2h?. Below, we consider very weak fields, (2 > (vr;t;)%, wherevr;

andr; are, respectively, the Fermi velocities and elastic scattering times in the layers. In this
diffusion limitwe can expand\” (- --) of equation (8) in series inx/¢? and/y/¢2. From
equation (8) we obtain a set of differential equations

b/ bl bl n* d*A ?f] (p) 9 chv'
lejz(p) = leA]ljz(p)w-fZ + Wj Z AJ1J (P) Ji2 (P) 2g4 d 2 3p ]/2( )
j

(10)
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In the diffusion limit we can also neglect ttB2dependence cyfs’jflz (p), using the expression

AP (p)=> "G4, (p/2—q)G" (p/2+q) (11)
q
WhereGi’.ljz(p) are the matrix elements of the Green'’s function:

) 2 i1 1\ Aihf1 1\
GRApy = |Ep— 2 —hxpo( 2+ =)o+ — (12)
2m 2\y Tty 2\t Ty
describing the double-layer system in the absence of the magnetic field. The Fermi energy
is measured from the centre between the two levels of the double quantum well, the elastic
scattering times are introduced as = E3/mwj, and ther,; are the phenomenologically
introduced inelastic scattering times.
In the weak-coupling limit we have

1 2(T /h)%t 1

—=— K - 13

7, 1+(At/h)? < T (13)
wheret = 271, /(7; + 1,) is the average elastic scattering time anthe tunnelling time. A

calculation ofA%”. (p) in the limit (13) gives

1 T; p z g
ARA ~ 1—— _pr.(Z) =2 14
i (P wj( Toj th(h> Tt) (14)

Tt

and

AfA(p) = AR (p) ~ (15)

(wl + wr)‘ct ’
In equation (14) we introduced the 2D diffusion coefficients in the lay2rs= v)%jrj/z.
A%%(p) is given by equations (14) and (15) as well, whl€f (p) andA %/ (p) are small and

can be neglected. A substitution of equations (14) and (15) into equation (10) leads to the

following equations:

°Dit; 92 RA T p 2 7 RA Tr ~RA
T gt WPl ) )G = G ) = (o
2 t !
R°D,t. 92 CRA(p) + T up D 2+Tr CRA(p) TICRA( )=0 (17)
- - Tl = — - = V.
4 9p? P Tor h Tt P T np

CRA(p)andCf4(p) are given by equations (16) and (17) with the indicasdr interchanged.
Equations (16) and (17) can be diagonalized by the substitutions
Ci'(p)=Ci(p)+Cy(p)  and  C(p) = MC(p) + 12Co(p).
For Cy(p) (k = 1, 2) we obtain

Ez 32 P 2 wy
|:_F a2 + <ﬁ> +qf | Ci(p) = EAIC (18)
where
qiy=(si+5)/2%8/2  A1p=1/2+ (s —5,)/25. (19)

Heres; = (D;t,)) t+(D;t) %, s? = (D;D,t?) 1, andS = [(s; — 5,) + 4s?]*/2. Equation
(18) is analogous to that for the Green’s function of a two-dimensional harmonic oscillator and
its solution is obtained in a straightforward way. The result is

CRA(p) = 2% 3 (~1e " LY(2u) [ A A2 ] . (20)

QD@+ D+E 2@t D+
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The expression fo€ X4 (p) is given by equation (20) with the layer indices interchanged.

Both terms in equation (20) contain diffusion poles modified due to tunnelling. In the
absence of tunnelling (uncoupled layers) we obtain the well-known result [4] for each layer.
Now we calculate the weak-localization contributitan,, . In the diffusion limit, equation (4)
gives

ezﬁ / /
Sour = 5rare 2 (V' DL D pepl Gl ()G (P
mTm<L*,

b'=R,A Ji'jviz pp'
b / b’ bb’' /
X Gjrjl(P)szj(p)lejz(lp+P|)- (21)
In the limit (13) we should retain only the terms with= j' = j; = j,. The weak-localization

contribution is expressed througtf# (p) andC R4 (p). Itgives a positive magnetoconductivity
Ao = 80 (B) — 80(0) as a sum of two parts [9]:

Ao 4 4
500 :f<€2_qf>+f<£2_q§>' (22)

Heredog = ¢?/27%h, and f (x) = ¥ (1/2 + 1/x) +Inx, wherey (x) is the digamma function.
In the absence of the magnetic field, the weak-localization contribution, within logarithmic
accuracy, is given as

7T,

50 (0) = 80 In( +2 1O ) (23)

‘L'w[l'(p, ‘L',‘L'(/,

where we have introduced an average inelastic scatteringdjme 27,7, /(Ty + Tyr).

It is convenient to analyse the results (22) and (23) in the symmetric case described by
D, =D, =D,y =1, andt, = 1,. In this case equation (23) takes the form

80 (0) = Sop[ln(z/7,) + In(t/7, + 2t/7,)]. The first term is the same as in the absence of
tunnelling while the second one is tunnelling dependent. In the symmetric case, equation (22)
gives

Ao _ B + B 24
sos 7 (B_o) f <Bo(1+2T<p/Tz)) 4)

where By = h/4eDt, is the characteristic field. In weak magnetic fields, the magneto-
conductivity increases according taB&-law. In stronger fields, when the magnetic length
becomes less thapiDz,, 5o (B) loses its dependence on the tunnelling and the system behaves
like two decoupled layers. In the limB > By, B > Bo(t,/t;) the magnetoconductivity is
proportional to Bog In B. Fort, < t,, an intermediate regime exisBy <« B < Bo(t,/1:),

in which the magnetoconductivity is proportionalde, In(B). Figure 1 shows the magnetic

field dependence of the magnetoconductivity described by equation (24) for several values of

T,/ T

4. Parallel magnetic field

Due to the spatial separation of the layers, a figldpplied parallel to them can considerably
influence the conductivity of the double-layer system; see, for example, references [19-22].
This effect occurs as a result of the modification of the electron energy spectrum of the coupled
layers by the fieldB. However, under the condition >> t the coherent tunnel coupling is
suppressed by the elastic scattering and the effect disappears. In contrast, the influence of
this in-plane fieldB on the weak-localization part of the conductivity should exist as long as

7, < 1,; the corresponding characteristic figgd has to be much smaller. An assessment of

this influence is given below in the limit (13).
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0 5 10 15 20
B/B,

Figure 1. Magnetoconductivity of the double-layer system pesipendiculamagnetic fieldB for
symmetric conditions. The curves are marked with the values of therygtipandBo = 7/4e D1, .

The parallel field renders the electron Green'’s function anisotropic.Brer (0, B, 0)
we choosed = (B(z — zp), 0, 0) with zo = ({{| z |I) + (r| z |r))/2 and obtain [20, 21]

2 T -1
GRA(p) = [Ep—p—— oy Tax:i:Pllh (£+i)iﬁ,ﬁ<i+i>] (25)
2m 2 2\ Tty 2\t Ty
whereA, = A—w.Zp,+38p, w. = eB/misthe cyclotron frequency, = (r|z|r)—(l|z|l)is
the interlayer distance, adg ~ B? is a small field-dependent correction to the level splitting
which can be neglected for smdil
Using equation (25) we can calcula/kéb/(p) from equation (11). In contrast to the case

for the previous secuon(,\’]’f (p) is now anisotropic. In the limit? >> Zvg;t;, instead of

equation (14) we have

1 : 4
AN p) = (1= L — Dytj[(pe F p)? + p2A/R — L (26)
w j T

J [ t
wherepg = mw.Z = eBZ, and the upper (lower) sign stands foe= [ (j = r). Equation
(15) remains unchanged. The Bethe—Salpeter equation for the Cooperon now reduces to a set
of linear algebraic equations:

C(p) = wi A% (P)w), +wj, Z A% (p)CY (p) (27)

whose solution is straightforward. A Calculat|on &f,., can be done according to equ-

ation (21), wﬂth”Jz(lp +p')) replaced bij”’Jz(p + p') found from equation (27). Since

7, > 1 holds, we again put = ;' = j; = j, and flnaIIy obtain

(28)

Ao = Aasat - 860 Z / (.X +s1)m

j=Lr

+
A6y = 80N [(1 + M) (1 + TL) /(1 + ol T Ter )] (29)
T T T

wherex = (p/h)? andR;(x) are the fourth-order polynomials defined by
Ri(x) = x*+ 205 + 5, — xp)x3 + [(51 +5,)% + 255, — s2) + 2vp(s, — 25) + x5]x°
+ 2[(s +5,) (518, — 57) + x5 (2515, — 57 — s2) + xZs/]x + [sps, — 52+ xps)]?
(30)
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with xz = (2pg/h)?. The result forR,(x) is given by equation (30) with the layer indices
interchanged. Although the fiel® induces an anisotropy in the Green’s functions, the
localization correctiodio (B) is isotropic because the main contribution in equation (21) comes
from |p| = |p| =~ mvg;.

Equations (28)—(30) show that in the weak-field regborx By, whereB, = h/eZ,/Drt,
and D = 2D,D,/(D; + D,) is the average diffusion coefficient, the magnetoconductivity
follows a B2-law:

£=<2s,_eZB>2|: 51+ s, _E|n<S’+S’+S>:|. (31)
Sog hS S18, — st2 S s;+s, — S
At 7, < 1, We obtainAo/Soq = (B/B1)?. In the opposite limit, a simple expression for the
magnetoconductivity can be obtained in the symmetric cAsg5o¢ = %(Tw/t,)z(B/Bl)z; it
shows a substantial suppression of the magnetoconductivity as a result of decreasing tunnelling
probability.

With the increase ofB, the B-dependence becomes weaker. Hbr>»> B; and
B? > Bf‘fw/l’,, the integral in equation (28) can be neglected and the magnetoconductivity
is saturated and equal tvoy,, defined by equation (29). Fat/7, < 1 the saturated value
goes to zero. Recently, a saturation behaviour of the weak-localization contribution in parallel
magnetic fields has been theoretically found for superlattices [15].

When the condition; < 7, holds, one can analytically evaluate the magnetoconductivity
for B2 < B?1,/7,; the resultis

Ao = 8opIn[1 + (B/B1)?]. (32)

It shows thatin the intermediate regiBd <« B? < B?t,/t,, the magnetoconductivity follows
a logarithmic law. In figure 2 we demonstrate a transition froB?&ehaviour at weak fields
to the saturation at stronger fields for several values of the ratig.

1.6
0.05
1.2}
(=]
o} 0.2
Los
5]
<
0.5
04}
2.0
0.0 1 1 1
0 2 4 6 8
(B/B,)

Figure 2. Magnetoconductivity of the double-layer system iparallel magnetic fieldB for
symmetric conditions. The curves are marked as in figure 18and /e Z,/Dr,

The tunnelling rate Az, can be varied by applying a transverse voltage which changes the
level splitting A [18]. In the case under consideratiir > /7, a relatively small variation
of A has no great influence on the electron densities in the wells, but can dramatically modify
the tunnelling rate. Figure 3 shows tiiedependence ofo (B) — o (0)|a—o for several
values of the magnetic field, for bofiarallel (solid) andperpendiculardashed lines) fields;
the thick solid line is the result faB = 0. The curves have a typical resonance-like behaviour
that is affected differently by the two field orientations. An increasa @lways leads to a
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—_
T

[56(B)-55(0)],_J/55,

At/h

Figure 3. The relative weak-localization correction to the conductivity of the double-layer system
as a function of the level splitting. for several values of thparallel (solid) andperpendicular
(dashed) magnetic field. Itis assumed thdt, = 0.1 atA = 0. The numbers next to the curves
show the values o8/ By (perpendicular field) andB/B1)? (parallel field).

decrease of the conductivity, because in this way the tunnelling is suppressed and, therefore,
the interference is increased. The perpendicular magnetic field tends to smooth this effect
because it suppresses the dependence of the weak-localization part of the conductivity on
the tunnelling; see section 3. On the other hand, the parallel field tends to strengthen the
tunnelling dependence of the weak-localization part: in the saturation regime, cf. figure 2, this
dependence is the strongest.

Above, we calculated the magnetoconductivity in the weak-tunnelling regime. Below, we
evaluate it again in the regime of coherent tunnel coupling.

5. Coherent tunnelling regime

The aim of this section is to study the weak-localization effects at sufficiently strong, coherent
tunnel coupling, described by ~ 7 or event, <« t. In these conditions one always has
7, < 1,, Which means that there is no competition between the tunnelling and inelastic
scattering processes. As a result, instead of two diffusion poles—see equation (20)—the
expression for the Cooperon contains just one pole as for a single-layer system. However, the
properties of this pole are somewhat different to those in the case of a single 2D layer and
require a separate consideration.

Below, we assume thdiy is large in comparison witll and A. Introducing a single
Fermi velocityvr for both layers, we write the average diffusion coefficienDas= v27/2.
The calculation of the Cooperon according to equations (11), (25), and (27) gives

wjwj [T . D(A)T
w +w, | T, 72
The inelastic scattering time enters the diffusion pole only as an average. On the other hand,

the Cooperon depends on the asymmetry of the elastic scattering described by the parameter
uw = (. — )/(zr, + 7). In equation (33) we have also introducecadependent diffusion

coefficient according to

-1
Cjy(p) = (P*+r(A)p5 + 2ur(A)pox)] . (33

2 T 2
DA = )= o D) (34)

1— p2r(A) A2+4T2+ (h/7)?
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Note thatD(A) differs from D only if the elastic scattering is asymmetric.

If there is no parallel magnetic fielgpg = 0), equation (33) has the same form as the
Cooperon of a single-layer system. Therefore, in the diffusion regime, equation (33) with the
substitutionp? — 4heB(n + 1/2) can be directly used to calculate the magnetoconductivity
in a perpendicular magnetic field. Using equation (21), we obtain, in analogy with the
single-layer case,

4eD(A)B
Ao = 80 f(#) (35)
and, with logarithmic accuracy§o(0) = dogin(r/7,). The only difference between

equation (35) and the well-known expression for a single-layer 2D system is the replacement
of D in the latter byD(A). The physical meaning of this change is clear and easily understood
in terms of the resistance resonance phenomenon [23, 24]; see also reference [18]. In
the corresponding theory [23, 24], the factol{1L— u?r(A)] describes theA-dependence
of the conductivity and of the diffusion coefficie® of the double quantum wells with
asymmetric scattering. With the increase|af,, D increases and leads to an increase of
the magnetoconductivitgo .

Now we consider the case of a parallel magnetic field. Using equations (33) and (21), we
obtain

Ao = §agIn[1+7(A)(B/B1)?]. (36)

The magnetoconductivity described by equation (36) does not depend on the asymmetry of
the scattering. On the other hand, its dependencg bas the same sign as in the case of the
perpendicular field: when increases;(A) goes to unity and\o increases. The behaviour

of the magnetoconductivity described by equations (35) and (36) is illustrated in figure 4.

(B/B,)*

-

10 15 20

Figure 4. Magnetoconductivity of the double-layer system in a coherent tunnelling regime for
2Tt/h = 4 andu = 0.7. The solid and dashed lines correspond to parallel and perpendicular
fields, respectively. The curves are marked with the values of the &7 .

The results for the magnetoconductivity described in this section are valig f&r 7,
under the condition®,eB/h « 1 for perpendicular field and Dt,(eZB/h)?> « 1 for
parallel fieldB. In the limit (13), whenr(A) = 1, equation (35) is equivalent to equation (22)
written atr, < t, andDr,eB/h < 1, while equation (36) is equivalent to equation (32).
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6. Discussion

We have investigated the influence of the tunnel coupling between two 2D layers on the
weak-localization-induced magnetoconductivity. This coupling introduces an extra degree of
freedom for an electron giving it the possibility of tunnelling between the layers and, therefore,

it reduces the interference effects. As a result, the weak-localization contribution is reduced
as the tunnelling rate/x; gradually prevails over the inelastic scattering rate. In particular,

it leads to the weakening of the magnetoresistance in the perpendicular magnetic field; see
section 3.

The results described in section 3 are similar to those obtained in reference [9] for two
thin metallic films separated by a barrier if one makesqual to the tunnelling timeg, and
721 Of reference [9]. This is not surprising. When the inelastic scattering lengths are small
in comparison to the film widths, the diffusion of the electrons in such a system proceeds in
the same way as in coupled 2D layers. A characteristic feature of the double-quantum-well
case, as opposed to the case of thin films, is the strong resonance dependence of the tunnelling
time z;, cf. equation (13), on the energy-level splitting The latter can be easily controlled
by external gates enclosing the double quantum wells. This opens up a new way to examine
the weak-localization phenomena by measuringAhgependence of the conductivity—see,
for example, figure 3—in addition to thR-dependence. The conductivity, due to its weak-
localization part, is maximal when the tunnelling resonance conditioa- 0 holds (this
can be called ‘delocalization resonance’), while an increaské ofcreases the interference
and leads to a decrease of the conductivity down to its value for uncoupled layers. On the
other hand, if the scattering times in the layers are different, the main part of the conductivity
will show the opposite effect (the resistance resonance [18]). Although the relative size of the
resistance resonance would be small due to the paramyeteit can obscure the delocalization
resonance. Therefore, the samples with symmetric scattering are preferable for probing the
interference corrections.

In section 4 we studied the magnetoconductivity in a parallel magnetic field. Since this
magnetoconductivity can exist only in the presence of the tunnel coupling, it becomes more
pronounced as the tunnelling rate prevails over the inelastic scattering rate. Although at very
small B both parallel and perpendicular fields gi#é-corrections to the magnetoconductivity,
at higher fields the behaviour becomes completely different. Whepetpendicularfield is
larger than bottBy and Boz, /7;, the weak-localization contribution increases logarithmically
with B and does not depend on the tunnelling. Whengiellel field is larger than botiB,
andBi1,/t, /1, 80 (B) becomes saturated, i.e., it loses its dependendglmut not that on the
tunnelling. Sincgvr/Z),/7,7 > 1 holds, the characteristic parallel fie#d is much larger
than the characteristic perpendicular fi@gl

With anincrease ol bothdo (B) andAo in a parallel magnetic field decrease. However,
in the case of coherent tunnel coupling (section 5) the behaviour of the magnetoconductivity
Ao VersusA is opposite: anincrease gfincreases\o. Atransition between these two kinds
of behaviour can be explained as follows. When the tunnel coupling becomes so strong that
Dt,(eBZ/h)? « 1, a change of, with A no longer modifies the magnetic field suppression
of the interference; see section 4. With a further increase of the tunnelling rate, when the latter
prevails over the elastic scattering rate, coherent coupling effects become important. Instead
of the states localized in the wells, one has a pair of hybridized states, which are well defined
in the limit of 2T > /. At A = 0 the electron density in both of these states is distributed
equally among the wells, and the parallel magnetic field cannot reduce the interference in
the way described in the introduction. The magnetoconductivity is zero, which is given also
by equation (36) at2 > i/t andA = 0. At A # 0 the symmetry is broken. The two
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states are mostly localized in different wells and the parallel magnetic field can reduce the
interference because transitions of electrons between these states are possible. In conclusion,
the magnetoconductivity increases with an increast.of

Let us briefly discuss the main approximations used in this paper. Since we neglected the
electron—electron interaction, which also leads to quantum corrections to the conductivity, the
theory is applicable at temperatures considerably lower/ifian[25]. We also neglected the
possibility of spin-flip scattering, assuming that the relevant scattering time is larget,than
The assumption af-correlated scattering does not lead to principal changes. For example, if
one takes into account the interlayer correlation of the scattering amplitudes, one has only to
replace ¥t in equation (13) by At — 1/7;,, wherer;, = 7%/muwy,..

Throughout the paper we calculated the total, i.e. summed over both layers, in-plane
conductivity of the double-layer system. Experimentally, it corresponds to double quantum
wells with common contacts to the layers. The case of independently contacted layers does
not require a separate consideration for the following reason. Since the system is assumed
macroscopic, its in-plane size should substantially exceed the inelastic scatteringlength
On the other hand, the tunnel coupling manifests itself in weak-localization phenomena under
the conditionz, > 7,. In such a case, a characteristic current redistribution length [26]

/.2
[y ~ V5T,

is small in comparison to the size of the system, which means that for any case of independent
contacting, the double-layer system would behave as a system with common contacts.

Finally, since we analysed in detail the results for parallel and perpendicularSietis
study could be of help in describing weak localization in tilted magnetic fields by decomposing
B into the relevant components. For a compact treatment that encompasses both orientations,
applicable tosingle quasi-2D or 3D systems and/or superlattices but not to double wells as
investigated here, we refer the reader to reference [27].
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